package com.vincent.rsf.framework.common;
/**
 * Twitter_Snowflake
 * SnowFlake的结构如下(每部分用-分开):
 * 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 -
 * 000000000000 
 * 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0
 * 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
 * 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T
 * = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69
 * 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId
 * 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号
 * 加起来刚好64位,为一个Long型。
 * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
 */
public class SnowflakeIdWorker {
	// ==============================Fields===========================================
	/** 开始时间截 (2015-01-01) */
	private final long twepoch = 1420041600000L;
	
	/** 序列值所占的位数 */
	private final long sequenceBits = 12L;
	/** 机器id所占的位数 */
	private final long workerIdBits = 5L;
	/** 机房id所占的位数 */
	private final long datacenterIdBits = 5L;
	/** 机器id向左移12位 */
	private final long workerIdLeftShift = sequenceBits;
	/** 机房id向左移17位(5+12) */
	private final long datacenterIdLeftShift =workerIdLeftShift + workerIdBits;
	/** 时间截向左移22位(5+5+12) */
	private final long timestampLeftShift = datacenterIdLeftShift + datacenterIdBits;
	
	/** 支持的最大机器id (位数二进制值) */
	private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
	/** 支持的最大数据标识id (位数二进制值)  */
	private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
	
	/**生成序列的掩码 */
	private final long sequenceMask = -1L ^ (-1L << sequenceBits);
	/** 工作机器ID(0~31) */
	private long workerId;
	/** 数据中心ID(0~31) */
	private long datacenterId;
	/** 毫秒内序列 */
	private long sequence = 0L;
	/** 上次生成ID的时间截 */
	private long lastTimestamp = -1L;
	// ==============================Constructors=====================================
	
	/**
	 * 构造函数
	 * 
	 * @param workerId
	 *            工作ID (0~31)
	 * @param datacenterId
	 *            数据中心ID (0~31)
	 */
	public SnowflakeIdWorker(long workerId, long datacenterId) {
		if (workerId > maxWorkerId || workerId < 0) {
			throw new IllegalArgumentException(
					String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
		}
		if (datacenterId > maxDatacenterId || datacenterId < 0) {
			throw new IllegalArgumentException(
					String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
		}
		this.workerId = workerId;
		this.datacenterId = datacenterId;
	}
	public SnowflakeIdWorker(){
		this(0L, 0L);
	}
	// ==============================Methods==========================================
	/**
	 * 获得下一个ID (该方法是线程安全的)
	 * 
	 * @return SnowflakeId
	 */
	public synchronized long nextId() {
		long timestamp = timeGen();
		// 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
		if (timestamp < lastTimestamp) {
			throw new RuntimeException(String.format(
					"Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
		}
		// 如果是同一时间生成的,则进行毫秒内序列
		if (lastTimestamp == timestamp) {
			sequence = (sequence + 1) & sequenceMask;
			// 毫秒内序列溢出
			if (sequence == 0) {
				// 阻塞到下一个毫秒,获得新的时间戳
				timestamp = tilNextMillis(lastTimestamp);
			}
		}
		// 时间戳改变,毫秒内序列重置
		else {
			sequence = 0L;
		}
		// 上次生成ID的时间截
		lastTimestamp = timestamp;
		// 移位并通过或运算拼到一起组成64位的ID
		return ((timestamp - twepoch) << timestampLeftShift) //
				| (datacenterId << datacenterIdLeftShift) //
				| (workerId << workerIdLeftShift) //
				| sequence;
	}
	
	/**
	 * 阻塞到下一个毫秒,直到获得新的时间戳
	 * 
	 * @param lastTimestamp
	 *            上次生成ID的时间截
	 * @return 当前时间戳
	 */
	protected long tilNextMillis(long lastTimestamp) {
		long timestamp = timeGen();
		while (timestamp <= lastTimestamp) {
			timestamp = timeGen();
		}
		return timestamp;
	}
	/**
	 * 返回以毫秒为单位的当前时间
	 * 
	 * @return 当前时间(毫秒)
	 */
	protected long timeGen() {
		return System.currentTimeMillis();
	}
	// ==============================Test=============================================
	/** 测试 */
	public static void main(String[] args) {
		SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0);
		for (int i = 0; i < 1000; i++) {
			long id = idWorker.nextId();
			System.out.println(Long.toBinaryString(id));
			System.out.println(id);
		}
	}
}