| | |
| | | package com.zy.asrs.utils; |
| | | |
| | | import com.core.common.Arith; |
| | | import com.core.common.Cools; |
| | | import com.zy.core.properties.SlaveProperties; |
| | | |
| | | import java.math.BigDecimal; |
| | | import java.text.DecimalFormat; |
| | | import java.util.ArrayList; |
| | | import java.util.List; |
| | | |
| | | /** |
| | | * Created by vincent on 2020/8/27 |
| | |
| | | return (float) Arith.multiplys(2, f, 1); |
| | | } |
| | | |
| | | /** |
| | | * 通过库位号获取 排 |
| | | */ |
| | | public static int getRow(String locNo) { |
| | | if (!Cools.isEmpty(locNo)) { |
| | | return Integer.parseInt(locNo.substring(0, 2)); |
| | | } |
| | | throw new RuntimeException("库位解析异常"); |
| | | } |
| | | |
| | | /** |
| | | * 通过库位号获取 排 |
| | | */ |
| | | public static int getBay(String locNo) { |
| | | if (!Cools.isEmpty(locNo)) { |
| | | return Integer.parseInt(locNo.substring(2, 5)); |
| | | } |
| | | throw new RuntimeException("库位解析异常"); |
| | | } |
| | | |
| | | /** |
| | | * 通过库位号获取 排 |
| | | */ |
| | | public static int getLev(String locNo) { |
| | | if (!Cools.isEmpty(locNo)) { |
| | | return Integer.parseInt(locNo.substring(5, 7)); |
| | | } |
| | | throw new RuntimeException("库位解析异常"); |
| | | } |
| | | |
| | | public static void main(String[] args) { |
| | | double[] lev = RingThroughXY(183.0, 1830.0); |
| | | System.out.printf("点的坐标为: (%.2f, %.2f)%n", lev[0], lev[1]); |
| | | } |
| | | |
| | | public static double[] RingThroughXY(double a,double b) { |
| | | // while (true){ |
| | | // if (b>=a){ |
| | | // b=b-a; |
| | | // }else { |
| | | // break; |
| | | // } |
| | | // } |
| | | double l = b/a; |
| | | // 已知数据 |
| | | double circumference = 314; // 圆周长 |
| | | double arcLength = 314*l; // 给出的弧长 |
| | | |
| | | // 计算圆的半径 |
| | | double radius = circumference / (2 * Math.PI); |
| | | |
| | | // 圆心坐标 |
| | | double centerX = 50; |
| | | double centerY = 50; |
| | | |
| | | // 求弧度 |
| | | double theta = arcLength / radius; |
| | | |
| | | // 计算点的坐标 |
| | | double x = 100-(centerX + radius * Math.cos(theta)); |
| | | double y = centerY + radius * Math.sin(theta); |
| | | |
| | | return new double[]{x,y}; |
| | | } |
| | | |
| | | public static double[] RingThroughXYRgv(double a,double b) { |
| | | double l = b / a; |
| | | |
| | | // 圆的已知参数 |
| | | double radius = 47.52; // 半径为48 |
| | | // double circumference = ; // 计算圆周长 |
| | | double arcLength = 2 * Math.PI * radius * l; // 给出的弧长 |
| | | |
| | | // 圆心坐标 |
| | | double centerX = 50; |
| | | double centerY = 50; |
| | | |
| | | // 求弧度 |
| | | double theta = arcLength / radius; |
| | | |
| | | // 计算点的坐标 |
| | | double x = 100-(centerX + radius * Math.cos(theta)); |
| | | double y = centerY + radius * Math.sin(theta); |
| | | |
| | | return new double[]{x, y}; |
| | | } |
| | | |
| | | public static double[] RingThroughXYSta(double a,double b) { |
| | | double l = b / a; |
| | | |
| | | // 圆的已知参数 |
| | | double radius = 50; // 半径为48 |
| | | // double circumference = ; // 计算圆周长 |
| | | double arcLength = 2 * Math.PI * radius * l; // 给出的弧长 |
| | | |
| | | // 圆心坐标 |
| | | double centerX = 55; |
| | | double centerY = 45; |
| | | |
| | | // 求弧度 |
| | | double theta = arcLength / radius; |
| | | |
| | | // 计算点的坐标 |
| | | double x = 100-(centerX + radius * Math.cos(theta)); |
| | | double y = centerY + radius * Math.sin(theta); |
| | | |
| | | return new double[]{x, y}; |
| | | } |
| | | public static double[] getRgvPosNew(Integer devNo,double a, double b) { |
| | | double[] rgvPosNew = getRgvPosNew(a, b); |
| | | switch (devNo){ |
| | | case 101: |
| | | case 102: |
| | | case 103: |
| | | case 104: |
| | | case 105: |
| | | case 106: |
| | | case 107: |
| | | case 108: |
| | | case 109: |
| | | case 110: |
| | | case 111: |
| | | rgvPosNew[0] = rgvPosNew[0] - 30; |
| | | rgvPosNew[1] = rgvPosNew[1]; |
| | | break; |
| | | case 112: |
| | | case 113: |
| | | case 114: |
| | | case 115: |
| | | rgvPosNew[0] = rgvPosNew[0] + 30; |
| | | rgvPosNew[1] = rgvPosNew[1]; |
| | | break; |
| | | case 116: |
| | | case 117: |
| | | case 118: |
| | | case 119: |
| | | case 120: |
| | | case 121: |
| | | case 122: |
| | | case 123: |
| | | case 124: |
| | | case 125: |
| | | case 126: |
| | | case 127: |
| | | case 128: |
| | | case 129: |
| | | case 130: |
| | | case 131: |
| | | case 132: |
| | | case 133: |
| | | rgvPosNew[0] = rgvPosNew[0]; |
| | | rgvPosNew[1] = rgvPosNew[1] + 30; |
| | | break; |
| | | case 134: |
| | | rgvPosNew[0] = rgvPosNew[0]; |
| | | rgvPosNew[1] = rgvPosNew[1] - 30; |
| | | break; |
| | | } |
| | | return rgvPosNew; |
| | | |
| | | } |
| | | public static double[] getRgvPosNew(double a, double b) { |
| | | // 定义区间及对应的几何参数(新增圆弧参数) |
| | | // 结构:{start, end, 类型, 参数...} |
| | | // 类型说明:0-直线,1-圆弧(需要圆心坐标) |
| | | Object[][] intervals = { |
| | | // 直线区间(0-134400) |
| | | {0.0, 134400.0, 0, 390.0, 775.0, 25.0, 775.0}, |
| | | |
| | | // 弧线区间(拐点-转弯-133)保持贝塞尔曲线 |
| | | {134400.0, 134900.0, 1, 25.0, 775.0, 65.0, 882.0, 25.0, 882.0}, |
| | | |
| | | // 直线区间 |
| | | {134900.0, 680103.0,0, 65.0, 885.0, 1115.0, 882.0}, |
| | | |
| | | // // 弧线区间(拐点116-115),控制点假设为(1125, 882) |
| | | // {680103, 731550, 1115, 882, 1215, 775, 1125, 882}, |
| | | |
| | | // 圆弧区间(拐点116-115)新参数:圆心(1115,775) |
| | | {680103.0, 731550.0, 2, 1115.0, 882.0, 1215.0, 775.0, 1115.0, 775.0}, // 修正终点坐标 |
| | | |
| | | // 直线区间 |
| | | {731550.0, 972950.0,0, 1215.0, 775.0, 1215.0, 125.0}, |
| | | // 弧线区间(拐点112-顶点),控制点假设为(1215, 80) |
| | | {972950.0, 1016193.0,0, 1215.0, 125.0, 1164.0, 80.0}, |
| | | // 弧线区间(拐点-顶点-111),控制点假设为(1164, 125) |
| | | {1016193.0, 1063563.0,0, 1164.0, 80.0, 1115.0, 125.0}, |
| | | // 直线区间 |
| | | {1063563.0, 1315250.0,0, 1115.0, 150.0, 1115.0, 720.0}, |
| | | // 弧线区间(拐点101-转弯),控制点假设为(1115, 750) |
| | | {1315250.0, 1322829.0,0, 1115.0, 720.0, 1100.0, 750.0}, |
| | | // 直线区间 |
| | | {1322829.0, 1737000.0,0, 1090.0, 775.0, 390.0, 775.0}, |
| | | }; |
| | | |
| | | for (Object[] interval : intervals) { |
| | | double start = (Double) interval[0]; |
| | | double end = (Double) interval[1]; |
| | | int type = (Integer) interval[2]; |
| | | |
| | | if (b >= start && b <= end) { |
| | | double t = (b - start) / (end - start); |
| | | |
| | | // 根据不同类型计算坐标 |
| | | switch (type) { |
| | | case 0: // 直线 |
| | | return linearInterpolation(interval, t); |
| | | case 1: // 贝塞尔曲线 |
| | | return bezierInterpolation(interval, t); |
| | | case 2: // 圆弧 |
| | | return circularInterpolation(interval, t); |
| | | } |
| | | } |
| | | } |
| | | return new double[]{0, 0}; |
| | | } |
| | | |
| | | |
| | | |
| | | // 直线插值 |
| | | private static double[] linearInterpolation(Object[] interval, double t) { |
| | | double x1 = (Double) interval[3]; |
| | | double y1 = (Double) interval[4]; |
| | | double x2 = (Double) interval[5]; |
| | | double y2 = (Double) interval[6]; |
| | | return new double[]{ |
| | | x1 + t * (x2 - x1), |
| | | y1 + t * (y2 - y1) |
| | | }; |
| | | } |
| | | |
| | | // 贝塞尔曲线插值 |
| | | private static double[] bezierInterpolation(Object[] interval, double t) { |
| | | double x0 = (Double) interval[3]; |
| | | double y0 = (Double) interval[4]; |
| | | double x2 = (Double) interval[5]; |
| | | double y2 = (Double) interval[6]; |
| | | double cx = (Double) interval[7]; |
| | | double cy = (Double) interval[8]; |
| | | return new double[]{ |
| | | Math.pow(1-t, 2)*x0 + 2*(1-t)*t*cx + t*t*x2, |
| | | Math.pow(1-t, 2)*y0 + 2*(1-t)*t*cy + t*t*y2 |
| | | }; |
| | | } |
| | | |
| | | // 圆弧插值(新增) |
| | | private static double[] circularInterpolation(Object[] interval, double t) { |
| | | // 参数解析 |
| | | double startX = (Double) interval[3]; |
| | | double startY = (Double) interval[4]; |
| | | double endX = (Double) interval[5]; |
| | | double endY = (Double) interval[6]; |
| | | double centerX = (Double) interval[7]; |
| | | double centerY = (Double) interval[8]; |
| | | |
| | | // 计算起始角度和终止角度 |
| | | double startAngle = Math.atan2(startY - centerY, startX - centerX); |
| | | double endAngle = Math.atan2(endY - centerY, endX - centerX); |
| | | |
| | | // 角度插值 |
| | | double currentAngle = startAngle + t * (endAngle - startAngle); |
| | | double radius = Math.hypot(startX - centerX, startY - centerY); |
| | | |
| | | return new double[]{ |
| | | centerX + radius * Math.cos(currentAngle), |
| | | centerY + radius * Math.sin(currentAngle) |
| | | }; |
| | | } |
| | | |
| | | } |