| | |
| | | package com.zy.asrs.framework.common; |
| | | |
| | | /** |
| | | * Twitter_Snowflake<br> |
| | | * SnowFlake的结构如下(每部分用-分开):<br> |
| | | * 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - |
| | | * 000000000000 <br> |
| | | * 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br> |
| | | * 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截) |
| | | * 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T |
| | | * = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br> |
| | | * 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br> |
| | | * 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br> |
| | | * 加起来刚好64位,为一个Long型。<br> |
| | | * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。 |
| | | */ |
| | | public class SnowflakeIdWorker { |
| | | |
| | | // ==============================Fields=========================================== |
| | | /** 开始时间截 (2015-01-01) */ |
| | | private final long twepoch = 1420041600000L; |
| | | |
| | | /** 序列值所占的位数 */ |
| | | private final long sequenceBits = 12L; |
| | | |
| | | /** 机器id所占的位数 */ |
| | | private final long workerIdBits = 5L; |
| | | |
| | | /** 机房id所占的位数 */ |
| | | private final long datacenterIdBits = 5L; |
| | | |
| | | /** 机器id向左移12位 */ |
| | | private final long workerIdLeftShift = sequenceBits; |
| | | |
| | | /** 机房id向左移17位(5+12) */ |
| | | private final long datacenterIdLeftShift =workerIdLeftShift + workerIdBits; |
| | | |
| | | /** 时间截向左移22位(5+5+12) */ |
| | | private final long timestampLeftShift = datacenterIdLeftShift + datacenterIdBits; |
| | | |
| | | /** 支持的最大机器id (位数二进制值) */ |
| | | private final long maxWorkerId = -1L ^ (-1L << workerIdBits); |
| | | |
| | | /** 支持的最大数据标识id (位数二进制值) */ |
| | | private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); |
| | | |
| | | /**生成序列的掩码 */ |
| | | private final long sequenceMask = -1L ^ (-1L << sequenceBits); |
| | | |
| | | /** 工作机器ID(0~31) */ |
| | | private long workerId; |
| | | |
| | | /** 数据中心ID(0~31) */ |
| | | private long datacenterId; |
| | | |
| | | /** 毫秒内序列 */ |
| | | private long sequence = 0L; |
| | | |
| | | /** 上次生成ID的时间截 */ |
| | | private long lastTimestamp = -1L; |
| | | |
| | | // ==============================Constructors===================================== |
| | | |
| | | /** |
| | | * 构造函数 |
| | | * |
| | | * @param workerId |
| | | * 工作ID (0~31) |
| | | * @param datacenterId |
| | | * 数据中心ID (0~31) |
| | | */ |
| | | public SnowflakeIdWorker(long workerId, long datacenterId) { |
| | | if (workerId > maxWorkerId || workerId < 0) { |
| | | throw new IllegalArgumentException( |
| | | String.format("worker Id can't be greater than %d or less than 0", maxWorkerId)); |
| | | } |
| | | if (datacenterId > maxDatacenterId || datacenterId < 0) { |
| | | throw new IllegalArgumentException( |
| | | String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId)); |
| | | } |
| | | this.workerId = workerId; |
| | | this.datacenterId = datacenterId; |
| | | } |
| | | |
| | | public SnowflakeIdWorker(){ |
| | | this(0L, 0L); |
| | | } |
| | | |
| | | // ==============================Methods========================================== |
| | | /** |
| | | * 获得下一个ID (该方法是线程安全的) |
| | | * |
| | | * @return SnowflakeId |
| | | */ |
| | | public synchronized long nextId() { |
| | | long timestamp = timeGen(); |
| | | |
| | | // 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常 |
| | | if (timestamp < lastTimestamp) { |
| | | throw new RuntimeException(String.format( |
| | | "Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp)); |
| | | } |
| | | |
| | | // 如果是同一时间生成的,则进行毫秒内序列 |
| | | if (lastTimestamp == timestamp) { |
| | | sequence = (sequence + 1) & sequenceMask; |
| | | // 毫秒内序列溢出 |
| | | if (sequence == 0) { |
| | | // 阻塞到下一个毫秒,获得新的时间戳 |
| | | timestamp = tilNextMillis(lastTimestamp); |
| | | } |
| | | } |
| | | // 时间戳改变,毫秒内序列重置 |
| | | else { |
| | | sequence = 0L; |
| | | } |
| | | |
| | | // 上次生成ID的时间截 |
| | | lastTimestamp = timestamp; |
| | | |
| | | // 移位并通过或运算拼到一起组成64位的ID |
| | | return ((timestamp - twepoch) << timestampLeftShift) // |
| | | | (datacenterId << datacenterIdLeftShift) // |
| | | | (workerId << workerIdLeftShift) // |
| | | | sequence; |
| | | } |
| | | |
| | | /** |
| | | * 阻塞到下一个毫秒,直到获得新的时间戳 |
| | | * |
| | | * @param lastTimestamp |
| | | * 上次生成ID的时间截 |
| | | * @return 当前时间戳 |
| | | */ |
| | | protected long tilNextMillis(long lastTimestamp) { |
| | | long timestamp = timeGen(); |
| | | while (timestamp <= lastTimestamp) { |
| | | timestamp = timeGen(); |
| | | } |
| | | return timestamp; |
| | | } |
| | | |
| | | /** |
| | | * 返回以毫秒为单位的当前时间 |
| | | * |
| | | * @return 当前时间(毫秒) |
| | | */ |
| | | protected long timeGen() { |
| | | return System.currentTimeMillis(); |
| | | } |
| | | |
| | | // ==============================Test============================================= |
| | | /** 测试 */ |
| | | public static void main(String[] args) { |
| | | SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0); |
| | | for (int i = 0; i < 1000; i++) { |
| | | long id = idWorker.nextId(); |
| | | System.out.println(Long.toBinaryString(id)); |
| | | System.out.println(id); |
| | | } |
| | | } |
| | | } |
| | | package com.zy.asrs.framework.common;
|
| | |
|
| | | /**
|
| | | * Twitter_Snowflake<br>
|
| | | * SnowFlake的结构如下(每部分用-分开):<br>
|
| | | * 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 -
|
| | | * 000000000000 <br>
|
| | | * 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
|
| | | * 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
|
| | | * 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T
|
| | | * = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
|
| | | * 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
|
| | | * 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
|
| | | * 加起来刚好64位,为一个Long型。<br>
|
| | | * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
|
| | | */
|
| | | public class SnowflakeIdWorker {
|
| | |
|
| | | // ==============================Fields===========================================
|
| | | /** 开始时间截 (2015-01-01) */
|
| | | private final long twepoch = 1420041600000L;
|
| | | |
| | | /** 序列值所占的位数 */
|
| | | private final long sequenceBits = 12L;
|
| | |
|
| | | /** 机器id所占的位数 */
|
| | | private final long workerIdBits = 5L;
|
| | |
|
| | | /** 机房id所占的位数 */
|
| | | private final long datacenterIdBits = 5L;
|
| | |
|
| | | /** 机器id向左移12位 */
|
| | | private final long workerIdLeftShift = sequenceBits;
|
| | |
|
| | | /** 机房id向左移17位(5+12) */
|
| | | private final long datacenterIdLeftShift =workerIdLeftShift + workerIdBits;
|
| | |
|
| | | /** 时间截向左移22位(5+5+12) */
|
| | | private final long timestampLeftShift = datacenterIdLeftShift + datacenterIdBits;
|
| | | |
| | | /** 支持的最大机器id (位数二进制值) */
|
| | | private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
|
| | |
|
| | | /** 支持的最大数据标识id (位数二进制值) */
|
| | | private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
|
| | | |
| | | /**生成序列的掩码 */
|
| | | private final long sequenceMask = -1L ^ (-1L << sequenceBits);
|
| | |
|
| | | /** 工作机器ID(0~31) */
|
| | | private long workerId;
|
| | |
|
| | | /** 数据中心ID(0~31) */
|
| | | private long datacenterId;
|
| | |
|
| | | /** 毫秒内序列 */
|
| | | private long sequence = 0L;
|
| | |
|
| | | /** 上次生成ID的时间截 */
|
| | | private long lastTimestamp = -1L;
|
| | |
|
| | | // ==============================Constructors=====================================
|
| | | |
| | | /**
|
| | | * 构造函数
|
| | | * |
| | | * @param workerId
|
| | | * 工作ID (0~31)
|
| | | * @param datacenterId
|
| | | * 数据中心ID (0~31)
|
| | | */
|
| | | public SnowflakeIdWorker(long workerId, long datacenterId) {
|
| | | if (workerId > maxWorkerId || workerId < 0) {
|
| | | throw new IllegalArgumentException(
|
| | | String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
|
| | | }
|
| | | if (datacenterId > maxDatacenterId || datacenterId < 0) {
|
| | | throw new IllegalArgumentException(
|
| | | String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
|
| | | }
|
| | | this.workerId = workerId;
|
| | | this.datacenterId = datacenterId;
|
| | | }
|
| | |
|
| | | public SnowflakeIdWorker(){
|
| | | this(0L, 0L);
|
| | | }
|
| | |
|
| | | // ==============================Methods==========================================
|
| | | /**
|
| | | * 获得下一个ID (该方法是线程安全的)
|
| | | * |
| | | * @return SnowflakeId
|
| | | */
|
| | | public synchronized long nextId() {
|
| | | long timestamp = timeGen();
|
| | |
|
| | | // 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
|
| | | if (timestamp < lastTimestamp) {
|
| | | throw new RuntimeException(String.format(
|
| | | "Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
|
| | | }
|
| | |
|
| | | // 如果是同一时间生成的,则进行毫秒内序列
|
| | | if (lastTimestamp == timestamp) {
|
| | | sequence = (sequence + 1) & sequenceMask;
|
| | | // 毫秒内序列溢出
|
| | | if (sequence == 0) {
|
| | | // 阻塞到下一个毫秒,获得新的时间戳
|
| | | timestamp = tilNextMillis(lastTimestamp);
|
| | | }
|
| | | }
|
| | | // 时间戳改变,毫秒内序列重置
|
| | | else {
|
| | | sequence = 0L;
|
| | | }
|
| | |
|
| | | // 上次生成ID的时间截
|
| | | lastTimestamp = timestamp;
|
| | |
|
| | | // 移位并通过或运算拼到一起组成64位的ID
|
| | | return ((timestamp - twepoch) << timestampLeftShift) //
|
| | | | (datacenterId << datacenterIdLeftShift) //
|
| | | | (workerId << workerIdLeftShift) //
|
| | | | sequence;
|
| | | }
|
| | | |
| | | /**
|
| | | * 阻塞到下一个毫秒,直到获得新的时间戳
|
| | | * |
| | | * @param lastTimestamp
|
| | | * 上次生成ID的时间截
|
| | | * @return 当前时间戳
|
| | | */
|
| | | protected long tilNextMillis(long lastTimestamp) {
|
| | | long timestamp = timeGen();
|
| | | while (timestamp <= lastTimestamp) {
|
| | | timestamp = timeGen();
|
| | | }
|
| | | return timestamp;
|
| | | }
|
| | |
|
| | | /**
|
| | | * 返回以毫秒为单位的当前时间
|
| | | * |
| | | * @return 当前时间(毫秒)
|
| | | */
|
| | | protected long timeGen() {
|
| | | return System.currentTimeMillis();
|
| | | }
|
| | |
|
| | | // ==============================Test=============================================
|
| | | /** 测试 */
|
| | | public static void main(String[] args) {
|
| | | SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0);
|
| | | for (int i = 0; i < 1000; i++) {
|
| | | long id = idWorker.nextId();
|
| | | System.out.println(Long.toBinaryString(id));
|
| | | System.out.println(id);
|
| | | }
|
| | | }
|
| | | }
|