zhang
昨天 2fa19599467263dcf582bb12906e03328e03b4a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
"""
任务分配算法
"""
import time
import random
import logging
from typing import Dict, List, Tuple, Optional, Set, Any
from collections import defaultdict
from abc import ABC, abstractmethod
 
from common.data_models import TaskData, AGVStatus, TaskAssignment, BackpackData
from algorithm_system.models.agv_model import AGVModel, AGVModelManager
from common.utils import get_coordinate_from_path_id, calculate_distance, calculate_manhattan_distance
from dataclasses import dataclass
 
 
class TaskAllocation(ABC):
    """任务分配算法基类"""
    
    def __init__(self, agv_manager: AGVModelManager):
        """
        初始化任务分配算法
        
        Args:
            agv_manager: AGV模型管理器
        """
        self.agv_manager = agv_manager
        self.logger = logging.getLogger(__name__)
    
    @abstractmethod
    def allocate_tasks(self, tasks: List[TaskData]) -> List[TaskAssignment]:
        """
        分配任务给AGV
        
        Args:
            tasks: 待分配的任务列表
            
        Returns:
            List[TaskAssignment]: 分配结果列表
        """
        pass
    
    def find_available_backpack_slot(self, agv_status: AGVStatus) -> Optional[int]:
        """
        查找AGV的可用背篓位置
        
        Args:
            agv_status: AGV状态信息
            
        Returns:
            Optional[int]: 可用的背篓位置编号,如果没有可用位置则返回None
        """
        if not agv_status.backpack:
            # 如果没有背篓信息,假设从第一个位置开始
            self.logger.warning(f"AGV {agv_status.agvId} 没有背篓信息,分配到位置0")
            return 0
        
        # 查找空闲且未执行任务的背篓位置
        for backpack_item in agv_status.backpack:
            if not backpack_item.loaded and not backpack_item.execute and not backpack_item.taskId:
                self.logger.debug(f"AGV {agv_status.agvId} 找到可用背篓位置: {backpack_item.index}")
                return backpack_item.index
        
        # 如果所有位置都被占用,返回None
        self.logger.debug(f"AGV {agv_status.agvId} 没有可用的背篓位置")
        return None
    
    def get_agv_available_capacity(self, agv_status: AGVStatus) -> int:
        """
        获取AGV的可用背篓容量
        
        Args:
            agv_status: AGV状态信息
            
        Returns:
            int: 可用背篓数量
        """
        if not agv_status.backpack:
            return 1  # 假设至少有一个背篓位置
        
        available_count = 0
        for backpack_item in agv_status.backpack:
            if not backpack_item.loaded and not backpack_item.execute and not backpack_item.taskId:
                available_count += 1
        
        return available_count
    
    def assign_task_with_backpack(self, agv_model, task: TaskData, lev_id: int) -> bool:
        """
        将任务分配给AGV的指定背篓位置
        
        Args:
            agv_model: AGV模型
            task: 任务数据
            lev_id: 背篓位置编号
            
        Returns:
            bool: 分配是否成功
        """
        try:
            # 使用AGV模型的assign_task方法
            success = agv_model.assign_task(
                task_id=task.taskId,
                priority=task.priority,
                start_code=task.start,
                end_code=task.end
            )
            
            if success:
                self.logger.info(f"任务 {task.taskId} 成功分配给AGV {agv_model.agvId} 的背篓位置 {lev_id}")
                return True
            else:
                self.logger.warning(f"任务 {task.taskId} 分配给AGV {agv_model.agvId} 失败")
                return False
                
        except Exception as e:
            self.logger.error(f"分配任务时发生异常: {e}")
            return False
 
 
class NearestFirstAllocation(TaskAllocation):
    """最近优先分配算法"""
    
    def allocate_tasks(self, tasks: List[TaskData]) -> List[TaskAssignment]:
        """
        使用最近优先策略分配任务
        
        Args:
            tasks: 待分配的任务列表
            
        Returns:
            List[TaskAssignment]: 分配结果列表
        """
        if not tasks:
            return []
        
        # 获取可用的AGV
        available_agvs = self.agv_manager.get_available_agvs()
        
        if not available_agvs:
            self.logger.warning("没有可用的AGV进行任务分配")
            return []
        
        # 1. 首先检查任务是否已经分配,避免重复分配
        already_assigned_tasks = set()
        all_agvs = self.agv_manager.get_all_agvs()
        for agv in all_agvs:
            if agv.backpack:
                for backpack_item in agv.backpack:
                    if backpack_item.taskId:
                        already_assigned_tasks.add(backpack_item.taskId)
                        self.logger.info(f"任务 {backpack_item.taskId} 已分配给 AGV {agv.agvId},跳过重复分配")
        
        # 2. 过滤掉已分配的任务
        unassigned_tasks = [task for task in tasks if task.taskId not in already_assigned_tasks]
        
        if not unassigned_tasks:
            self.logger.info("所有任务都已分配,无需重新分配")
            return []
        
        self.logger.info(f"总任务数: {len(tasks)}, 已分配: {len(already_assigned_tasks)}, 待分配: {len(unassigned_tasks)}")
        
        assignments = []
        path_mapping = self.agv_manager.path_mapping
        
        # 对每个任务找到最近的AGV
        for task in unassigned_tasks:
            if not available_agvs:
                break
                
            # 获取任务起点坐标
            task_start_coord = get_coordinate_from_path_id(task.start, path_mapping)
            if not task_start_coord:
                self.logger.warning(f"无法获取任务 {task.taskId} 起点 {task.start} 的坐标")
                continue
            
            # 找到距离最近的AGV
            nearest_agv = None
            min_distance = float('inf')
            
            for agv in available_agvs:
                if agv.coordinates:
                    distance = calculate_manhattan_distance(agv.coordinates, task_start_coord)
                    
                    # 如果AGV已有任务,计算完成当前任务后到新任务起点的距离
                    if agv.current_task_count > 0:
                        # 简化:假设AGV需要额外时间完成当前任务
                        distance += agv.current_task_count * 10
                    
                    if distance < min_distance:
                        min_distance = distance
                        nearest_agv = agv
            
            if nearest_agv and nearest_agv.can_accept_task(task.priority):
                # 获取AGV的原始状态数据来查找可用背篓位置
                agv_status = None
                for agv_state in self.agv_manager.get_all_agv_status():
                    if agv_state.agvId == nearest_agv.agvId:
                        agv_status = agv_state
                        break
                
                if agv_status:
                    # 查找可用的背篓位置
                    available_lev_id = self.find_available_backpack_slot(agv_status)
                    
                    if available_lev_id is not None:
                        # 分配任务到指定背篓位置
                        success = self.assign_task_with_backpack(nearest_agv, task, available_lev_id)
                        if success:
                            assignments.append(TaskAssignment(
                                taskId=task.taskId,
                                agvId=nearest_agv.agvId,
                                lev_id=available_lev_id
                            ))
                            
                            self.logger.info(f"任务 {task.taskId} 分配给最近的AGV {nearest_agv.agvId},背篓位置: {available_lev_id},距离: {min_distance}")
                            
                            # 检查AGV是否还有可用背篓位置
                            remaining_capacity = self.get_agv_available_capacity(agv_status) - 1
                            if remaining_capacity <= 0:
                                available_agvs.remove(nearest_agv)
                        else:
                            self.logger.warning(f"任务 {task.taskId} 分配给AGV {nearest_agv.agvId} 失败")
                    else:
                        self.logger.warning(f"AGV {nearest_agv.agvId} 没有可用的背篓位置")
                        available_agvs.remove(nearest_agv)
                else:
                    self.logger.warning(f"无法获取AGV {nearest_agv.agvId} 的状态信息")
        
        return assignments
 
 
class LoadBalancedAllocation(TaskAllocation):
    """负载均衡分配算法"""
    
    def allocate_tasks(self, tasks: List[TaskData]) -> List[TaskAssignment]:
        """
        使用负载均衡策略分配任务
        
        Args:
            tasks: 待分配的任务列表
            
        Returns:
            List[TaskAssignment]: 分配结果列表
        """
        if not tasks:
            return []
        
        # 获取所有AGV
        all_agvs = self.agv_manager.get_all_agvs()
        
        if not all_agvs:
            self.logger.warning("没有AGV进行任务分配")
            return []
        
        # 1. 首先检查任务是否已经分配,避免重复分配
        already_assigned_tasks = set()
        for agv in all_agvs:
            if agv.backpack:
                for backpack_item in agv.backpack:
                    if backpack_item.taskId:
                        already_assigned_tasks.add(backpack_item.taskId)
                        self.logger.info(f"任务 {backpack_item.taskId} 已分配给 AGV {agv.agvId},跳过重复分配")
        
        # 2. 过滤掉已分配的任务
        unassigned_tasks = [task for task in tasks if task.taskId not in already_assigned_tasks]
        
        if not unassigned_tasks:
            self.logger.info("所有任务都已分配,无需重新分配")
            return []
        
        self.logger.info(f"总任务数: {len(tasks)}, 已分配: {len(already_assigned_tasks)}, 待分配: {len(unassigned_tasks)}")
        
        assignments = []
        path_mapping = self.agv_manager.path_mapping
        
        # 按优先级排序任务
        sorted_tasks = sorted(unassigned_tasks, key=lambda t: t.priority, reverse=True)
        
        # 对每个任务分配给负载最低的AGV
        for task in sorted_tasks:
            # 获取任务起点坐标
            task_start_coord = get_coordinate_from_path_id(task.start, path_mapping)
            if not task_start_coord:
                self.logger.warning(f"无法获取任务 {task.taskId} 起点 {task.start} 的坐标")
                continue
            
            # 按负载和距离排序AGV
            agv_scores = []
            for agv in all_agvs:
                if not agv.can_accept_task(task.priority):
                    continue
                    
                # 计算负载得分(负载越低得分越高)
                load_score = 1.0 - agv.get_workload_ratio()
                
                # 计算距离得分(距离越近得分越高)
                distance_score = 0.0
                if agv.coordinates and task_start_coord:
                    distance = calculate_manhattan_distance(agv.coordinates, task_start_coord)
                    distance_score = 1.0 / (1.0 + distance / 100.0)  # 归一化距离得分
                
                # 计算效率得分
                efficiency_score = agv.calculate_efficiency_score(path_mapping)
                
                # 综合得分
                total_score = 0.4 * load_score + 0.3 * distance_score + 0.3 * efficiency_score
                agv_scores.append((agv, total_score))
            
            if not agv_scores:
                # 详细分析为什么没有AGV可以接受任务
                total_agvs = len(all_agvs)
                busy_count = 0
                low_battery_count = 0
                overloaded_count = 0
                status_invalid_count = 0
                
                for agv in all_agvs:
                    if agv.is_overloaded():
                        overloaded_count += 1
                    elif str(agv.status) not in ["0", "1", "2"]:
                        status_invalid_count += 1
                    elif agv.need_charging():
                        low_battery_count += 1
                    else:
                        busy_count += 1
                
                self.logger.warning(f"没有AGV可以接受任务 {task.taskId} - 详细分析:")
                self.logger.warning(f"  总AGV数: {total_agvs}")
                self.logger.warning(f"  任务满载: {overloaded_count}")
                self.logger.warning(f"  状态异常: {status_invalid_count}") 
                self.logger.warning(f"  电量过低: {low_battery_count}")
                self.logger.warning(f"  其他原因: {busy_count}")
                self.logger.warning(f"  任务优先级: {task.priority}")
                continue
            
            # 选择得分最高的AGV
            agv_scores.sort(key=lambda x: x[1], reverse=True)
            best_agv = agv_scores[0][0]
            
            # 获取AGV的原始状态数据来查找可用背篓位置
            agv_status = self.agv_manager.get_agv_status(best_agv.agvId)
            
            if agv_status:
                # 查找可用的背篓位置
                available_lev_id = self.find_available_backpack_slot(agv_status)
                
                if available_lev_id is not None:
                    # 分配任务到指定背篓位置
                    success = self.assign_task_with_backpack(best_agv, task, available_lev_id)
                    if success:
                        assignments.append(TaskAssignment(
                            taskId=task.taskId,
                            agvId=best_agv.agvId,
                            lev_id=available_lev_id
                        ))
                        
                        self.logger.info(f"任务 {task.taskId} 分配给负载均衡的AGV {best_agv.agvId},背篓位置: {available_lev_id},得分: {agv_scores[0][1]:.3f}")
                    else:
                        self.logger.warning(f"任务 {task.taskId} 分配给AGV {best_agv.agvId} 失败")
                else:
                    self.logger.warning(f"AGV {best_agv.agvId} 没有可用的背篓位置")
            else:
                self.logger.warning(f"无法获取AGV {best_agv.agvId} 的状态信息")
        
        return assignments
 
 
class PriorityFirstAllocation(TaskAllocation):
    """优先级优先分配算法"""
    
    def allocate_tasks(self, tasks: List[TaskData]) -> List[TaskAssignment]:
        """
        使用优先级优先策略分配任务
        
        Args:
            tasks: 待分配的任务列表
            
        Returns:
            List[TaskAssignment]: 分配结果列表
        """
        if not tasks:
            return []
        
        # 获取可用的AGV
        available_agvs = self.agv_manager.get_available_agvs()
        
        if not available_agvs:
            self.logger.warning("没有可用的AGV进行任务分配")
            return []
        
        # 1. 首先检查任务是否已经分配,避免重复分配
        already_assigned_tasks = set()
        all_agvs = self.agv_manager.get_all_agvs()
        for agv in all_agvs:
            if agv.backpack:
                for backpack_item in agv.backpack:
                    if backpack_item.taskId:
                        already_assigned_tasks.add(backpack_item.taskId)
                        self.logger.info(f"任务 {backpack_item.taskId} 已分配给 AGV {agv.agvId},跳过重复分配")
        
        # 2. 过滤掉已分配的任务
        unassigned_tasks = [task for task in tasks if task.taskId not in already_assigned_tasks]
        
        if not unassigned_tasks:
            self.logger.info("所有任务都已分配,无需重新分配")
            return []
        
        self.logger.info(f"总任务数: {len(tasks)}, 已分配: {len(already_assigned_tasks)}, 待分配: {len(unassigned_tasks)}")
        
        # 按优先级排序任务(高优先级在前)
        sorted_tasks = sorted(unassigned_tasks, key=lambda t: t.priority, reverse=True)
        
        assignments = []
        path_mapping = self.agv_manager.path_mapping
        
        # 优先分配高优先级任务
        for task in sorted_tasks:
            if not available_agvs:
                break
                
            # 获取任务起点坐标
            task_start_coord = get_coordinate_from_path_id(task.start, path_mapping)
            if not task_start_coord:
                self.logger.warning(f"无法获取任务 {task.taskId} 起点 {task.start} 的坐标")
                continue
            
            # 为高优先级任务选择最佳AGV
            best_agv = None
            best_score = -1
            
            for agv in available_agvs:
                if not agv.can_accept_task(task.priority):
                    continue
                
                # 计算综合得分
                distance_score = 0.0
                if agv.coordinates and task_start_coord:
                    distance = calculate_manhattan_distance(agv.coordinates, task_start_coord)
                    distance_score = 1.0 / (1.0 + distance / 50.0)
                
                efficiency_score = agv.calculate_efficiency_score(path_mapping)
                capacity_score = agv.get_task_capacity() / agv.max_capacity
                
                # 高优先级任务更注重效率和距离
                total_score = 0.5 * distance_score + 0.3 * efficiency_score + 0.2 * capacity_score
                
                if total_score > best_score:
                    best_score = total_score
                    best_agv = agv
            
            if best_agv:
                # 获取AGV的原始状态数据来查找可用背篓位置
                agv_status = self.agv_manager.get_agv_status(best_agv.agvId)
                
                if agv_status:
                    # 查找可用的背篓位置
                    available_lev_id = self.find_available_backpack_slot(agv_status)
                    
                    if available_lev_id is not None:
                        # 分配任务到指定背篓位置
                        success = self.assign_task_with_backpack(best_agv, task, available_lev_id)
                        if success:
                            assignments.append(TaskAssignment(
                                taskId=task.taskId,
                                agvId=best_agv.agvId,
                                lev_id=available_lev_id
                            ))
                            
                            self.logger.info(f"高优先级任务 {task.taskId} (优先级: {task.priority}) 分配给AGV {best_agv.agvId},背篓位置: {available_lev_id}")
                            
                            # 检查AGV是否还有可用背篓位置
                            remaining_capacity = self.get_agv_available_capacity(agv_status) - 1
                            if remaining_capacity <= 0:
                                available_agvs.remove(best_agv)
                        else:
                            self.logger.warning(f"任务 {task.taskId} 分配给AGV {best_agv.agvId} 失败")
                    else:
                        self.logger.warning(f"AGV {best_agv.agvId} 没有可用的背篓位置")
                        available_agvs.remove(best_agv)
                else:
                    self.logger.warning(f"无法获取AGV {best_agv.agvId} 的状态信息")
        
        return assignments
 
 
class MultiObjectiveAllocation(TaskAllocation):
    """多目标优化分配算法"""
    
    def __init__(self, agv_manager: AGVModelManager, 
                 distance_weight: float = 0.4, 
                 load_weight: float = 0.3, 
                 efficiency_weight: float = 0.3):
        """
        初始化多目标优化分配算法
        
        Args:
            agv_manager: AGV模型管理器
            distance_weight: 距离权重
            load_weight: 负载权重
            efficiency_weight: 效率权重
        """
        super().__init__(agv_manager)
        self.distance_weight = distance_weight
        self.load_weight = load_weight
        self.efficiency_weight = efficiency_weight
    
    def allocate_tasks(self, tasks: List[TaskData]) -> List[TaskAssignment]:
        """
        使用多目标优化策略分配任务
        
        Args:
            tasks: 待分配的任务列表
            
        Returns:
            List[TaskAssignment]: 分配结果列表
        """
        if not tasks:
            return []
        
        # 获取所有AGV
        all_agvs = self.agv_manager.get_all_agvs()
        
        if not all_agvs:
            self.logger.warning("没有AGV进行任务分配")
            return []
        
        # 1. 首先检查任务是否已经分配,避免重复分配
        already_assigned_tasks = set()
        for agv in all_agvs:
            if agv.backpack:
                for backpack_item in agv.backpack:
                    if backpack_item.taskId:
                        already_assigned_tasks.add(backpack_item.taskId)
                        self.logger.info(f"任务 {backpack_item.taskId} 已分配给 AGV {agv.agvId},跳过重复分配")
        
        # 2. 过滤掉已分配的任务
        unassigned_tasks = [task for task in tasks if task.taskId not in already_assigned_tasks]
        
        if not unassigned_tasks:
            self.logger.info("所有任务都已分配,无需重新分配")
            return []
        
        self.logger.info(f"总任务数: {len(tasks)}, 已分配: {len(already_assigned_tasks)}, 待分配: {len(unassigned_tasks)}")
        
        assignments = []
        path_mapping = self.agv_manager.path_mapping
        
        # 对每个任务-AGV对计算得分
        task_agv_scores = {}
        
        for task in unassigned_tasks:
            task_start_coord = get_coordinate_from_path_id(task.start, path_mapping)
            if not task_start_coord:
                continue
                
            for agv in all_agvs:
                if not agv.can_accept_task(task.priority):
                    continue
                
                # 距离得分
                distance_score = 0.0
                if agv.coordinates:
                    distance = calculate_manhattan_distance(agv.coordinates, task_start_coord)
                    distance_score = 1.0 / (1.0 + distance / 100.0)
                
                # 负载得分
                load_score = 1.0 - agv.get_workload_ratio()
                
                # 效率得分
                efficiency_score = agv.calculate_efficiency_score(path_mapping)
                
                # 计算综合得分
                total_score = (
                    self.distance_weight * distance_score +
                    self.load_weight * load_score +
                    self.efficiency_weight * efficiency_score
                )
                
                task_agv_scores[(task.taskId, agv.agvId)] = total_score
        
        # 使用贪心算法进行匹配
        assignments = self._greedy_matching(unassigned_tasks, all_agvs, task_agv_scores)
        
        return assignments
    
    def _greedy_matching(self, tasks: List[TaskData], agvs: List[AGVModel], 
                        scores: Dict[Tuple[str, str], float]) -> List[TaskAssignment]:
        """
        使用贪心算法进行任务-AGV匹配
        
        Args:
            tasks: 任务列表
            agvs: AGV列表
            scores: 任务-AGV对的得分
            
        Returns:
            List[TaskAssignment]: 分配结果
        """
        assignments = []
        remaining_tasks = [task.taskId for task in tasks]
        
        # 重复分配直到没有任务或没有可用AGV
        while remaining_tasks:
            # 找到得分最高的任务-AGV对
            best_score = -1
            best_task_id = None
            best_agv = None
            
            for task_id in remaining_tasks:
                for agv in agvs:
                    if agv.is_overloaded():
                        continue
                        
                    score = scores.get((task_id, agv.agvId), 0.0)
                    if score > best_score:
                        best_score = score
                        best_task_id = task_id
                        best_agv = agv
            
            if best_task_id and best_agv:
                # 获取AGV的原始状态数据来查找可用背篓位置
                agv_status = self.agv_manager.get_agv_status(best_agv.agvId)
                
                if agv_status:
                    # 查找可用的背篓位置
                    available_lev_id = self.find_available_backpack_slot(agv_status)
                    
                    if available_lev_id is not None:
                        # 找到对应的任务对象
                        task = next((t for t in tasks if t.taskId == best_task_id), None)
                        if task:
                            # 分配任务到指定背篓位置
                            success = self.assign_task_with_backpack(best_agv, task, available_lev_id)
                            if success:
                                assignments.append(TaskAssignment(
                                    taskId=best_task_id,
                                    agvId=best_agv.agvId,
                                    lev_id=available_lev_id
                                ))
                                
                                remaining_tasks.remove(best_task_id)
                                self.logger.info(f"多目标优化:任务 {best_task_id} 分配给AGV {best_agv.agvId},背篓位置: {available_lev_id},得分: {best_score:.3f}")
                            else:
                                self.logger.warning(f"任务 {best_task_id} 分配给AGV {best_agv.agvId} 失败")
                                break
                        else:
                            self.logger.error(f"找不到任务 {best_task_id} 的详细信息")
                            break
                    else:
                        self.logger.debug(f"AGV {best_agv.agvId} 没有可用的背篓位置,跳过")
                        break
                else:
                    self.logger.warning(f"无法获取AGV {best_agv.agvId} 的状态信息")
                    break
            else:
                break
        
        return assignments
 
 
class TaskAllocationFactory:
    """任务分配算法工厂类"""
    
    @staticmethod
    def create_allocator(algorithm_type: str, agv_manager: AGVModelManager) -> TaskAllocation:
        """
        创建任务分配算法
        
        Args:
            algorithm_type: 算法类型
            agv_manager: AGV模型管理器
            
        Returns:
            TaskAllocation: 任务分配算法对象
        """
        if algorithm_type == "NEAREST_FIRST":
            return NearestFirstAllocation(agv_manager)
        elif algorithm_type == "LOAD_BALANCED":
            return LoadBalancedAllocation(agv_manager)
        elif algorithm_type == "PRIORITY_FIRST":
            return PriorityFirstAllocation(agv_manager)
        elif algorithm_type == "MULTI_OBJECTIVE":
            return MultiObjectiveAllocation(agv_manager)
        else:
            # 默认使用负载均衡算法
            return LoadBalancedAllocation(agv_manager)