zhang
昨天 2fa19599467263dcf582bb12906e03328e03b4a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
"""
路径规划算法
"""
import heapq
import random
import math
import time
import logging
from typing import Dict, List, Tuple, Optional, Set, Any
from collections import defaultdict, deque
 
from common.data_models import PlannedPath, PathCode, AGVStatus, BackpackData
from common.utils import get_coordinate_from_path_id, calculate_distance, calculate_manhattan_distance, generate_segment_id, generate_navigation_code
from algorithm_system.algorithms.collision_detection import CollisionDetector, CollisionResolver
 
 
class ExecutingTaskExtractor:
    """执行中任务提取器"""
    
    def __init__(self, path_mapping: Dict[str, Dict[str, int]]):
        """
        初始化任务提取器
        
        Args:
            path_mapping: 路径点映射字典
        """
        self.path_mapping = path_mapping
        self.logger = logging.getLogger(__name__)
        
        # 预计算坐标映射
        self.coord_to_code = {(data['x'], data['y']): code for code, data in path_mapping.items()}
        
        # 预分类位置类型
        self.pickup_positions = [pos for pos in path_mapping.keys() if pos.startswith("1")]
        self.charging_positions = [pos for pos in path_mapping.keys() if pos.startswith("2")]
        self.delivery_positions = [pos for pos in path_mapping.keys() if pos.startswith("3")]
        self.standby_positions = [pos for pos in path_mapping.keys() if pos.startswith("4")]
    
    def extract_optimized_executing_tasks(self, agv_status_list: List[AGVStatus]) -> List[Dict]:
        """智能提取AGV执行任务"""
        executing_tasks = []
        
        for agv_status in agv_status_list:
            agv_id = agv_status.agvId
            current_position = agv_status.position
            
            if not agv_status.backpack:
                continue
                
            optimized_task = self._analyze_all_backpack_tasks(
                agv_id, current_position, agv_status.backpack, agv_status
            )
            
            if optimized_task:
                executing_tasks.append(optimized_task)
                
        self.logger.info(f"智能分析 {len(executing_tasks)} 个AGV的背篓任务并生成最优路径")
        return executing_tasks
    
    def _analyze_all_backpack_tasks(self, agv_id: str, current_position: str, 
                                   backpack: List[BackpackData], agv_status: AGVStatus) -> Optional[Dict]:
        """
        分析所有背篓任务,确定最优执行策略
        """
        # 1. 提取并分类所有有效任务
        loaded_tasks = []      # 已装载的任务
        unloaded_tasks = []    # 未装载的任务
        all_tasks = []         # 所有任务
        
        self.logger.debug(f"[AGV {agv_id}] 开始分析背篓任务,位置: {current_position}")
        
        for i, bp in enumerate(backpack):
            self.logger.debug(f"[AGV {agv_id}] 背篓位置{i+1}: taskId={bp.taskId}, loaded={bp.loaded}, execute={bp.execute}")
            
            if not bp.taskId:
                self.logger.debug(f"[AGV {agv_id}] 背篓位置{i+1}: 跳过(无任务ID)")
                continue
                
            # 尝试解析任务详情
            task_info = self._parse_task_details(bp.taskId, current_position)
            if not task_info:
                self.logger.warning(f"[AGV {agv_id}] 任务 {bp.taskId} 解析失败,跳过")
                continue
                
            task_data = {
                'backpack_item': bp,
                'task_info': task_info,
                'distance_to_start': task_info.get('distance_to_start', float('inf')),
                'distance_to_end': task_info.get('distance_to_end', float('inf'))
            }
            
            all_tasks.append(task_data)
            
            if bp.loaded:
                loaded_tasks.append(task_data)
                self.logger.debug(f"[AGV {agv_id}] 任务 {bp.taskId} 已装载,距离终点: {task_info.get('distance_to_end', 'N/A')}")
            else:
                unloaded_tasks.append(task_data)
                self.logger.debug(f"[AGV {agv_id}] 任务 {bp.taskId} 未装载,距离起点: {task_info.get('distance_to_start', 'N/A')}")
        
        self.logger.debug(f"[AGV {agv_id}] 任务分析结果: 总任务={len(all_tasks)}, 已装载={len(loaded_tasks)}, 未装载={len(unloaded_tasks)}")
        
        # 2. 如果没有任何任务,返回None
        if not all_tasks:
            self.logger.debug(f"[AGV {agv_id}] 没有有效任务,返回None")
            return None
            
        # 3. 决策最优路径策略
        optimal_strategy = self._determine_next_best_action(
            loaded_tasks, unloaded_tasks, current_position
        )
        
        if not optimal_strategy:
            self.logger.debug(f"[AGV {agv_id}] 决策返回None,没有最优策略")
            return None
            
        self.logger.debug(f"[AGV {agv_id}] 决策完成: {optimal_strategy['strategy']} - {optimal_strategy['action']}")
        self.logger.debug(f"[AGV {agv_id}] 目标位置: {optimal_strategy['target_position']}")
        self.logger.debug(f"[AGV {agv_id}] 决策原因: {optimal_strategy.get('reason', 'N/A')}")
            
        # 4. 构建任务信息
        result = {
            'agvId': agv_id,
            'currentPosition': current_position,
            'strategy': optimal_strategy['strategy'],
            'next_action': optimal_strategy['action'],
            'target_position': optimal_strategy['target_position'],
            'primary_task': optimal_strategy['selected_task'],
            'all_loaded_tasks': loaded_tasks,
            'all_unloaded_tasks': unloaded_tasks,
            'total_tasks_count': len(all_tasks),
            'estimated_efficiency': optimal_strategy.get('efficiency_score', 0),
            'decision_reason': optimal_strategy.get('reason', ''),
            'agvDirection': agv_status.direction,
            'agvVoltage': agv_status.vol,
            'agvError': agv_status.error
        }
        
        self.logger.debug(f"[AGV {agv_id}] 最终任务信息构建完成,返回结果")
        return result
    
    def _determine_next_best_action(self, loaded_tasks: List[Dict], 
                                   unloaded_tasks: List[Dict], current_position: str) -> Optional[Dict]:
        """
        确定AGV下一步最优行动
        
        Args:
            loaded_tasks: 已装载的任务
            unloaded_tasks: 未装载的任务
            current_position: 当前位置
            
        Returns:
            Optional[Dict]: 最优行动策略
        """
        # 默认策略:综合优化决策
        # 1. 如果有已装载任务,优先送货
        if loaded_tasks:
            nearest_delivery = min(loaded_tasks, key=lambda t: t['distance_to_end'])
            
            # 2. 如果也有未装载任务,比较距离决策
            if unloaded_tasks:
                nearest_pickup = min(unloaded_tasks, key=lambda t: t['distance_to_start'])
                
                # 综合优化策略:如果取货点显著更近,优先取货;否则优先送货
                if nearest_pickup['distance_to_start'] * 1.5 < nearest_delivery['distance_to_end']:
                    return {
                        'strategy': 'comprehensive_optimization',
                        'action': 'pickup',
                        'selected_task': nearest_pickup,
                        'target_position': nearest_pickup['task_info']['start_position'],
                        'efficiency_score': self._calculate_pickup_efficiency(nearest_pickup, current_position),
                        'reason': f"综合优化:取货点({nearest_pickup['distance_to_start']})比送货点({nearest_delivery['distance_to_end']})显著更近"
                    }
                else:
                    return {
                        'strategy': 'comprehensive_optimization',
                        'action': 'deliver',
                        'selected_task': nearest_delivery,
                        'target_position': nearest_delivery['task_info']['end_position'],
                        'efficiency_score': self._calculate_delivery_efficiency(nearest_delivery, current_position),
                        'reason': f"综合优化:优先送达已装载货物,送货距离{nearest_delivery['distance_to_end']}"
                    }
            else:
                # 只有已装载任务,直接送货
                return {
                    'strategy': 'comprehensive_optimization',
                    'action': 'deliver',
                    'selected_task': nearest_delivery,
                    'target_position': nearest_delivery['task_info']['end_position'],
                    'efficiency_score': self._calculate_delivery_efficiency(nearest_delivery, current_position),
                    'reason': f"综合优化:送达唯一已装载货物,距离{nearest_delivery['distance_to_end']}"
                }
        
        # 3. 如果只有未装载任务,取货
        elif unloaded_tasks:
            nearest_pickup = min(unloaded_tasks, key=lambda t: t['distance_to_start'])
            return {
                'strategy': 'comprehensive_optimization',
                'action': 'pickup',
                'selected_task': nearest_pickup,
                'target_position': nearest_pickup['task_info']['start_position'],
                'efficiency_score': self._calculate_pickup_efficiency(nearest_pickup, current_position),
                'reason': f"综合优化:取货唯一未装载任务,距离{nearest_pickup['distance_to_start']}"
            }
        
        # 4. 没有任务
        return None
    
    def _parse_task_details(self, task_id: str, current_position: str) -> Optional[Dict]:
        """
        解析任务详细信息,包括起终点和距离
        
        Args:
            task_id: 任务ID
            current_position: 当前位置
            
        Returns:
            Optional[Dict]: 任务详细信息
        """
        self.logger.debug(f"开始解析任务 {task_id},当前位置: {current_position}")
        
        start_pos, end_pos = self._fast_parse_task_start_end(task_id)
        
        if not start_pos or not end_pos:
            self.logger.warning(f"任务 {task_id} 解析失败: start_pos={start_pos}, end_pos={end_pos}")
            return None
            
        self.logger.debug(f"任务 {task_id} 解析成功: start={start_pos}, end={end_pos}")
        
        # 计算距离
        current_coord = get_coordinate_from_path_id(current_position, self.path_mapping)
        start_coord = get_coordinate_from_path_id(start_pos, self.path_mapping) 
        end_coord = get_coordinate_from_path_id(end_pos, self.path_mapping)
        
        if not all([current_coord, start_coord, end_coord]):
            return None
            
        distance_to_start = calculate_manhattan_distance(current_coord, start_coord)
        distance_to_end = calculate_manhattan_distance(current_coord, end_coord)
        
        return {
            'task_id': task_id,
            'start_position': start_pos,
            'end_position': end_pos,
            'distance_to_start': distance_to_start,
            'distance_to_end': distance_to_end,
            'start_coord': start_coord,
            'end_coord': end_coord
        }
    
    def _calculate_delivery_efficiency(self, task_data: Dict, current_position: str) -> float:
        """
        计算送货效率分数
        
        Args:
            task_data: 任务数据
            current_position: 当前位置
            
        Returns:
            float: 效率分数 (0-10)
        """
        distance = task_data['distance_to_end']
        
        # 距离越近效率越高
        distance_score = max(0, 10 - distance / 5)
        
        # 已装载的任务有额外奖励
        loaded_bonus = 3.0 if task_data['backpack_item'].loaded else 0
        
        return distance_score + loaded_bonus
    
    def _calculate_pickup_efficiency(self, task_data: Dict, current_position: str) -> float:
        """
        计算取货效率分数
        
        Args:
            task_data: 任务数据
            current_position: 当前位置
            
        Returns:
            float: 效率分数 (0-10)
        """
        distance_to_start = task_data['distance_to_start']
        
        # 距离越近效率越高
        distance_score = max(0, 10 - distance_to_start / 3)
        
        # 很近的取货点有高奖励
        if distance_to_start <= 3:
            distance_score += 5.0
        elif distance_to_start <= 5:
            distance_score += 2.0
            
        return distance_score
    
    def _fast_parse_task_start_end(self, task_id: str) -> Tuple[Optional[str], Optional[str]]:
        """
        解析任务起点和终点
        支持两种格式:
        1. 标准格式:xxx_start_end
        2. 简单格式:数字ID(通过hash分配位置)
        
        Args:
            task_id: 任务ID
            
        Returns:
            Tuple[Optional[str], Optional[str]]: (起点, 终点)
        """
        self.logger.debug(f"解析任务ID: {task_id}")
        
        # 方法1:尝试标准格式解析(包含下划线)
        if "_" in task_id:
            parts = task_id.split("_")
            self.logger.debug(f"任务ID包含下划线,分割结果: {parts}")
            
            if len(parts) >= 3:
                potential_start = parts[-2]
                potential_end = parts[-1]
                
                start_valid = potential_start in self.path_mapping
                end_valid = potential_end in self.path_mapping
                
                self.logger.debug(f"标准格式解析结果: start={potential_start}(valid={start_valid}), end={potential_end}(valid={end_valid})")
                
                if start_valid and end_valid:
                    return potential_start, potential_end
                    
            self.logger.debug(f"任务ID分割后部分数量不足: {len(parts)} < 3")
        
        # 方法2:简单数字ID的备选机制(通过hash分配位置)
        self.logger.debug(f"尝试简单数字ID备选解析机制")
        
        # 获取所有可用位置
        all_positions = list(self.path_mapping.keys())
        if len(all_positions) < 2:
            self.logger.warning(f"路径映射位置不足,无法为任务分配起终点")
            return None, None
        
        # 使用任务ID的hash值来分配起点和终点
        try:
            task_hash = abs(hash(task_id))
            
            # 分配起点(使用hash的前一半)
            start_index = task_hash % len(all_positions)
            start_pos = all_positions[start_index]
            
            # 分配终点(使用hash的后一半,确保与起点不同)
            end_index = (task_hash // len(all_positions)) % len(all_positions)
            if end_index == start_index:
                end_index = (end_index + 1) % len(all_positions)
            end_pos = all_positions[end_index]
            
            self.logger.debug(f"简单ID备选解析成功: 任务{task_id} -> start={start_pos}, end={end_pos}")
            return start_pos, end_pos
            
        except Exception as e:
            self.logger.error(f"简单ID备选解析失败: {e}")
        
        self.logger.warning(f"任务ID {task_id} 所有解析方法都失败,返回 None, None")
        return None, None
    
    def _fast_parse_target(self, task_id: str, current_position: str, loaded: bool) -> Optional[str]:
        """
        解析任务目标位置
        
        Args:
            task_id: 任务ID
            current_position: 当前位置
            loaded: 是否已装载
            
        Returns:
            Optional[str]: 目标位置码
        """
        _, task_end = self._fast_parse_task_start_end(task_id)
        if task_end:
            return task_end
        
        # 基于hash值和装载状态快速选择
        hash_val = hash(task_id) % 1000
        
        if loaded:
            # 已装载,选择出库区域
            target_positions = [pos for pos in self.delivery_positions if pos != current_position]
            if not target_positions:
                target_positions = [pos for pos in self.path_mapping.keys() if pos != current_position]
        else:
            # 未装载,选择仓库区域
            target_positions = [pos for pos in self.pickup_positions if pos != current_position]
            if not target_positions:
                target_positions = [pos for pos in self.path_mapping.keys() if pos != current_position]
        
        if target_positions:
            return target_positions[hash_val % len(target_positions)]
        
        return None
 
    def extract_executing_tasks(self, agv_status_list: List[AGVStatus]) -> List[Dict]:
        """提取所有AGV正在执行的任务"""
        self.logger.debug(f"开始转换任务为标准格式,AGV数量: {len(agv_status_list)}")
        
        optimized_tasks = self.extract_optimized_executing_tasks(agv_status_list)
        
        self.logger.debug(f"提取结果数量: {len(optimized_tasks)}")
        
        legacy_tasks = []
        for i, task in enumerate(optimized_tasks):
            try:
                self.logger.debug(f"转换任务 #{i+1}: AGV {task['agvId']}")
                
                primary_task = task['primary_task']
                task_info = primary_task['task_info']
                backpack_item = primary_task['backpack_item']
                
                self.logger.debug(f"  - primary_task存在: {primary_task is not None}")
                self.logger.debug(f"  - task_info存在: {task_info is not None}")
                self.logger.debug(f"  - backpack_item存在: {backpack_item is not None}")
                
                # 根据action确定状态
                is_pickup_action = task['next_action'] == 'pickup'
                
                self.logger.debug(f"  - next_action: {task['next_action']}")
                self.logger.debug(f"  - is_pickup_action: {is_pickup_action}")
                self.logger.debug(f"  - target_position: {task['target_position']}")
                
                # 保持原有的标准JSON格式
                legacy_task = {
                    'agvId': task['agvId'],
                    'taskId': task_info['task_id'],
                    'currentPosition': task['currentPosition'],
                    'backpackIndex': backpack_item.index,
                    'status': 'executing',
                    'agvDirection': task['agvDirection'],
                    'agvVoltage': task['agvVoltage'],
                    'agvError': task['agvError'],
                    'loaded': backpack_item.loaded,
                    'needPickup': is_pickup_action,
                    'targetPosition': task['target_position'],
                    'taskStart': task_info['start_position'],
                    'taskEnd': task_info['end_position']
                }
                
                self.logger.debug(f"  - 任务构建成功: {legacy_task['agvId']} -> {legacy_task['targetPosition']}")
                legacy_tasks.append(legacy_task)
                
            except Exception as e:
                self.logger.error(f"转换任务 #{i+1} 失败: {e}")
                self.logger.error(f"任务内容: {task}")
                continue
            
        self.logger.info(f"使用综合优化策略,为 {len(legacy_tasks)} 个AGV生成标准格式路径")
        return legacy_tasks
 
 
class BatchPathPlanner:
    """批量路径规划器"""
    
    def __init__(self, path_mapping: Dict[str, Dict[str, int]], 
                 algorithm_type: str = "A_STAR", agv_manager=None):
        """
        初始化批量路径规划器
        
        Args:
            path_mapping: 路径点映射字典
            algorithm_type: 基础路径规划算法类型
            agv_manager: 用于获取AGV状态信息
        """
        self.path_mapping = path_mapping
        self.algorithm_type = algorithm_type
        self.agv_manager = agv_manager
        self.logger = logging.getLogger(__name__)
        
        # 初始化优化组件
        self.task_extractor = ExecutingTaskExtractor(path_mapping)
        self.collision_detector = FastCollisionDetector(min_distance=3.0)
        self.collision_resolver = FastCollisionResolver(path_mapping, self.collision_detector, agv_manager)
        self.base_planner = PathPlanningFactory.create_path_planner(algorithm_type, path_mapping)
    
    def plan_all_agv_paths(self, agv_status_list: List[AGVStatus], 
                          include_idle_agv: bool = False,
                          constraints: List[Tuple[int, int, float]] = None) -> Dict:
        """
        为所有AGV规划路径(每个AGV只生成一个路径)
        
        Args:
            agv_status_list: AGV状态列表
            include_idle_agv: 是否包含空闲AGV
            constraints: 路径约束条件
            
        Returns:
            Dict: 包含所有路径信息的结果
        """
        start_time = time.time()
        
        # 1. 提取执行中的任务(使用向后兼容的方法)
        executing_tasks = self.task_extractor.extract_executing_tasks(agv_status_list)
        
        # 2. 路径规划
        planned_paths = []
        total_planning_time = 0
        planned_agv_ids = set()
        
        for task in executing_tasks:
            agv_id = task['agvId']
            current_pos = task['currentPosition']
            target_pos = task['targetPosition']
            task_id = task['taskId']
            
            self.logger.debug(f"开始路径规划: AGV {agv_id}, 任务 {task_id}")
            self.logger.debug(f"  - current_pos: {current_pos} ({type(current_pos)})")
            self.logger.debug(f"  - target_pos: {target_pos} ({type(target_pos)})")
            
            # 避免重复规划
            if agv_id in planned_agv_ids:
                self.logger.debug(f"  - 跳过AGV {agv_id}:已规划")
                continue
            
            # 验证位置格式
            if not current_pos or not target_pos:
                self.logger.error(f"  - AGV {agv_id} 位置信息无效: current={current_pos}, target={target_pos}")
                continue
            
            # 路径格式标准化
            from common.utils import normalize_path_id
            normalized_current = normalize_path_id(current_pos)
            normalized_target = normalize_path_id(target_pos)
            
            self.logger.debug(f"  - 格式标准化: {current_pos} -> {normalized_current}, {target_pos} -> {normalized_target}")
            
            # 路径规划
            path_start_time = time.time()
            self.logger.debug(f"  - 调用base_planner.plan_path({normalized_current}, {normalized_target})")
            planned_path = self.base_planner.plan_path(normalized_current, normalized_target, constraints)
            path_end_time = time.time()
            
            planning_time = (path_end_time - path_start_time) * 1000
            total_planning_time += planning_time
            
            self.logger.debug(f"  - 路径规划结果: {planned_path is not None}")
            if planned_path:
                self.logger.debug(f"  - 路径长度: {len(planned_path.codeList) if hasattr(planned_path, 'codeList') else 'N/A'}")
            else:
                self.logger.error(f"  - AGV {agv_id} 路径规划失败: {current_pos} -> {target_pos}")
            
            if planned_path:
                # 生成路径字典
                seg_id = generate_segment_id(agv_id=agv_id, task_id=task_id, action_type="2")
                
                path_dict = {
                    'agvId': agv_id,
                    'segId': seg_id,
                    'codeList': []
                }
                
                # 转换路径点格式
                for i, path_code in enumerate(planned_path.codeList):
                    if isinstance(path_code, PathCode):
                        action_type = "2"  # 任务类型
                        pos_type = None
                        backpack_level = task.get('backpackIndex', 0)
                        is_target_point = False
                        
                        # 确定位置类型:最后一个点的动作类型
                        if i == len(planned_path.codeList) - 1:  # 最后一个路径点
                            is_target_point = True
                            if task.get('loaded', False):
                                # 已装载任务:当前路径是去终点放货
                                pos_type = "2"  # 放货
                                self.logger.debug(f"AGV {agv_id} 在终点 {path_code.code} 设置放货动作")
                            else:
                                # 未装载任务:当前路径是去起点取货
                                pos_type = "1"  # 取货
                                self.logger.debug(f"AGV {agv_id} 在起点 {path_code.code} 设置取货动作")
                        
                        enhanced_code = generate_navigation_code(
                            code=path_code.code,
                            direction=path_code.direction,
                            action_type=action_type,
                            task_id=task_id,
                            pos_type=pos_type,
                            backpack_level=backpack_level,
                            is_target_point=is_target_point
                        )
                        path_dict['codeList'].append(enhanced_code)
                    else:
                        enhanced_code = generate_navigation_code(
                            code=path_code.get('code', ''),
                            direction=path_code.get('direction', '90'),
                            action_type="2",
                            task_id=task_id
                        )
                        path_dict['codeList'].append(enhanced_code)
                
                planned_paths.append(path_dict)
                planned_agv_ids.add(agv_id)
                self.logger.debug(f"AGV {agv_id} 快速规划: {current_pos} -> {target_pos}")
        
        # 3. 空闲AGV处理
        if include_idle_agv:
            idle_paths = self._fast_plan_idle_agv_paths(agv_status_list, executing_tasks, constraints, planned_agv_ids)
            planned_paths.extend(idle_paths)
        
        # 4. 去重检查
        final_paths = []
        final_agv_ids = set()
        for path in planned_paths:
            agv_id = path['agvId']
            if agv_id not in final_agv_ids:
                final_paths.append(path)
                final_agv_ids.add(agv_id)
        planned_paths = final_paths
        
        # 5. 碰撞检测和解决
        conflicts = self.collision_detector.detect_conflicts(planned_paths)
        
        if conflicts:
            self.logger.info(f"发现 {len(conflicts)} 个碰撞,快速解决中...")
            planned_paths = self.collision_resolver.resolve_conflicts(planned_paths, conflicts, executing_tasks)
            remaining_conflicts = self.collision_detector.detect_conflicts(planned_paths)
        else:
            remaining_conflicts = []
        
        end_time = time.time()
        total_time = (end_time - start_time) * 1000
        
        # 6. 构建优化结果
        result = {
            'totalAgvs': len(agv_status_list),
            'executingTasksCount': len(executing_tasks),
            'plannedPathsCount': len(planned_paths),
            'totalPlanningTime': round(total_time, 2),
            'pathPlanningTime': round(total_planning_time, 2),
            'conflictsDetected': len(conflicts),
            'remainingConflicts': len(remaining_conflicts),
            'algorithm': f"Optimized_{self.algorithm_type}",
            'fourDirectionCompliant': True,
            'collisionFree': len(remaining_conflicts) == 0,
            'plannedPaths': planned_paths,
            'executingTasks': executing_tasks
        }
        
        self.logger.info(f"优化批量路径规划完成 - 总AGV: {result['totalAgvs']}, "
                        f"执行中任务: {result['executingTasksCount']}, "
                        f"规划路径: {result['plannedPathsCount']}, "
                        f"总耗时: {result['totalPlanningTime']:.2f}ms, "
                        f"无碰撞: {result['collisionFree']}")
        
        return result
    
    def _fast_plan_idle_agv_paths(self, agv_status_list: List[AGVStatus], 
                                 executing_tasks: List[Dict],
                                 constraints: List[Tuple[int, int, float]] = None,
                                 planned_agv_ids: Set[str] = None) -> List[Dict]:
        """
        为空闲AGV规划路径
        """
        idle_paths = []
        executing_agv_ids = {task['agvId'] for task in executing_tasks}
        
        if planned_agv_ids is None:
            planned_agv_ids = executing_agv_ids.copy()
        
        for agv_status in agv_status_list:
            agv_id = agv_status.agvId
            
            if agv_id in planned_agv_ids:
                continue
            
            if self._is_agv_idle_fast(agv_status):
                current_pos = agv_status.position
                target_pos = self._get_idle_agv_target_fast(agv_id, current_pos)
                
                if target_pos and target_pos != current_pos:
                    planned_path = self.base_planner.plan_path(current_pos, target_pos, constraints)
                    
                    if planned_path:
                        action_type = "3" if self._is_charging_path(target_pos) else "4"
                        seg_id = generate_segment_id(agv_id=agv_id, target_position=target_pos, action_type=action_type)
                        
                        path_dict = {
                            'agvId': agv_id,
                            'segId': seg_id,
                            'codeList': []
                        }
                        
                        for i, path_code in enumerate(planned_path.codeList):
                            if isinstance(path_code, PathCode):
                                # 空闲AGV不需要taskId、posType和lev字段
                                enhanced_code = generate_navigation_code(
                                    code=path_code.code,
                                    direction=path_code.direction,
                                    action_type=action_type,
                                    is_target_point=False  # 空闲AGV路径无目标点概念
                                )
                                path_dict['codeList'].append(enhanced_code)
                        
                        idle_paths.append(path_dict)
                        planned_agv_ids.add(agv_id)
        
        return idle_paths
    
    def _is_agv_idle_fast(self, agv_status: AGVStatus) -> bool:
        """判断AGV是否空闲"""
        if agv_status.status not in [0, 1, 2] or agv_status.error != 0:
            return False
        
        # 检查背篓
        if agv_status.backpack:
            for item in agv_status.backpack[:2]:  # 只检查前两个
                if item.loaded and item.execute:
                    return False
        
        return True
    
    def _get_idle_agv_target_fast(self, agv_id: str, current_position: str) -> Optional[str]:
        """获取空闲AGV目标位置"""
        hash_val = hash(agv_id) % 1000
        
        # 选择逻辑
        charging_positions = [pos for pos in self.task_extractor.charging_positions if pos != current_position]
        if charging_positions:
            return charging_positions[hash_val % len(charging_positions)]
        
        standby_positions = [pos for pos in self.task_extractor.standby_positions if pos != current_position]
        if standby_positions:
            return standby_positions[hash_val % len(standby_positions)]
        
        all_positions = [pos for pos in self.path_mapping.keys() if pos != current_position]
        if all_positions:
            return all_positions[hash_val % len(all_positions)]
        
        return None
 
    def _is_charging_path(self, target_position: str) -> bool:
        """
        判断目标位置是否为充电站(后期修改)
        """
        if not target_position:
            return False
        
        # 充电站识别
        return target_position.startswith("2") or "charge" in target_position.lower()
 
 
class PathPlanner:
    """路径规划器基类"""
    
    def __init__(self, path_mapping: Dict[str, Dict[str, int]]):
        """
        初始化路径规划器
        
        Args:
            path_mapping: 路径点映射字典
        """
        self.path_mapping = path_mapping
        self.logger = logging.getLogger(__name__)
    
    def plan_path(self, start_code: str, end_code: str, 
                 constraints: List[Tuple[int, int, float]] = None) -> Optional[PlannedPath]:
        """
        规划从起点到终点的路径
        
        Args:
            start_code: 起始路径点ID
            end_code: 目标路径点ID
            constraints: 约束条件列表
            
        Returns:
            Optional[PlannedPath]: 规划的路径,如果无法规划则返回None
        """
        raise NotImplementedError("子类必须实现此方法")
    
    def is_valid_path_point(self, code: str) -> bool:
        """
        检查路径点ID是否有效
        
        Args:
            code: 路径点ID
            
        Returns:
            bool: 是否有效
        """
        return code in self.path_mapping
 
 
class AStarPathPlanner(PathPlanner):
    """A*路径规划器"""
    
    def __init__(self, path_mapping: Dict[str, Dict[str, int]], turn_cost: float = 0.5):
        """
        初始化A*路径规划器
        
        Args:
            path_mapping: 路径点映射字典
            turn_cost: 转向代价
        """
        super().__init__(path_mapping)
        self.turn_cost = turn_cost
        self.logger = logging.getLogger(__name__)
        
        # 四个方向:上、右、下、左 (严格四方向移动)
        self.directions = [(0, -1), (1, 0), (0, 1), (-1, 0)]
        self.direction_angles = ["270", "0", "90", "180"]
        
        # 预计算坐标映射(必须在 _build_adjacency_list 之前初始化)
        self.coord_to_code = {}
        for code, data in path_mapping.items():
            if isinstance(data, dict) and 'x' in data and 'y' in data:
                self.coord_to_code[(data['x'], data['y'])] = code
        
        # 预计算邻接表
        self.adjacency = self._build_adjacency_list()
        
        # 性能监控
        self.planning_count = 0
        self.total_planning_time = 0.0
        
        self.logger.debug(f"A*规划器初始化完成,邻接表: {len(self.adjacency)} 个节点")
    
    def _build_adjacency_list(self) -> Dict[str, List[Tuple[str, str]]]:
        """
        预计算邻接表
        
        Returns:
            Dict[str, List[Tuple[str, str]]]: {节点: [(邻居节点, 移动方向), ...]}
        """
        adjacency = defaultdict(list)
        
        for code, coord_data in self.path_mapping.items():
            x, y = coord_data['x'], coord_data['y']
            
            # 检查四个方向的邻居
            for i, (dx, dy) in enumerate(self.directions):
                next_x, next_y = x + dx, y + dy
                
                # 查找邻居代码
                neighbor_coord = (next_x, next_y)
                if neighbor_coord in self.coord_to_code:
                    neighbor_code = self.coord_to_code[neighbor_coord]
                    direction = self.direction_angles[i]
                    adjacency[code].append((neighbor_code, direction))
        
        return adjacency
    
    def plan_path(self, start_code: str, end_code: str, 
                 constraints: List[Tuple[int, int, float]] = None) -> Optional[PlannedPath]:
        """       
        Args:
            start_code: 起始路径点ID
            end_code: 目标路径点ID
            constraints: 约束条件列表
            
        Returns:
            Optional[PlannedPath]: 规划的路径
        """
        # 验证
        if not self.is_valid_path_point(start_code) or not self.is_valid_path_point(end_code):
            return None
        
        if start_code == end_code:
            return PlannedPath(agvId="", codeList=[PathCode(code=start_code, direction="90")])
        
        # 获取坐标(使用预计算映射)
        start_coord = (self.path_mapping[start_code]['x'], self.path_mapping[start_code]['y'])
        end_coord = (self.path_mapping[end_code]['x'], self.path_mapping[end_code]['y'])
        
        # A*实现
        # 使用元组堆,减少对象创建开销
        open_set = [(0, start_code, None, [])]  # (f_score, code, parent, path)
        closed_set = set()
        g_scores = {start_code: 0}
        
        # 预计算约束检查函数
        constraint_check = self._build_constraint_checker(constraints) if constraints else None
        
        while open_set:
            f_score, current_code, parent_code, path = heapq.heappop(open_set)
            
            if current_code in closed_set:
                continue
                
            closed_set.add(current_code)
            current_path = path + [current_code]
            
            if current_code == end_code:
                # 重建路径
                return self._build_path_result(current_path)
            
            # 使用预计算的邻接表
            for neighbor_code, direction in self.adjacency[current_code]:
                if neighbor_code in closed_set:
                    continue
                
                # 约束检查
                if constraint_check and constraint_check(neighbor_code):
                    continue
                
                # 代价计算
                g_cost = g_scores[current_code] + 1
                
                if neighbor_code not in g_scores or g_cost < g_scores[neighbor_code]:
                    g_scores[neighbor_code] = g_cost
                    
                    # 启发式计算
                    neighbor_coord = (self.path_mapping[neighbor_code]['x'], 
                                    self.path_mapping[neighbor_code]['y'])
                    h_cost = abs(neighbor_coord[0] - end_coord[0]) + abs(neighbor_coord[1] - end_coord[1])
                    f_cost = g_cost + h_cost
                    
                    heapq.heappush(open_set, (f_cost, neighbor_code, current_code, current_path))
        
        return None
    
    def _build_constraint_checker(self, constraints: List[Tuple[int, int, float]]):
        """构建约束检查函数"""
        def check_constraints(code: str) -> bool:
            coord = (self.path_mapping[code]['x'], self.path_mapping[code]['y'])
            for cx, cy, radius in constraints:
                if (coord[0] - cx) ** 2 + (coord[1] - cy) ** 2 <= radius ** 2:
                    return True
            return False
        return check_constraints
    
    def _build_path_result(self, path_codes: List[str]) -> PlannedPath:
        """构建路径结果"""
        result_codes = []
        
        for i, code in enumerate(path_codes):
            direction = "90"  # 默认方向
            
            if i < len(path_codes) - 1:
                # 使用预计算的邻接表查找方向
                next_code = path_codes[i + 1]
                for neighbor_code, neighbor_direction in self.adjacency[code]:
                    if neighbor_code == next_code:
                        direction = neighbor_direction
                        break
            
            result_codes.append(PathCode(code=code, direction=direction))
        
        return PlannedPath(agvId="", codeList=result_codes)
 
 
# 碰撞检测器
class FastCollisionDetector:
    """碰撞检测器"""
    
    def __init__(self, min_distance: float = 3.0):
        self.min_distance = min_distance
        self.logger = logging.getLogger(__name__)
    
    def detect_conflicts(self, planned_paths: List[Dict]) -> List[Dict]:
        """
        碰撞检测 - 基于时间步的优化检测
        
        Args:
            planned_paths: 规划路径列表
            
        Returns:
            List[Dict]: 冲突列表
        """
        conflicts = []
        if len(planned_paths) < 2:
            return conflicts
        
        # 构建时间-位置映射
        time_positions = defaultdict(list)
        
        for path_data in planned_paths:
            agv_id = path_data['agvId']
            code_list = path_data.get('codeList', [])
            
            for time_step, path_code in enumerate(code_list):
                # 快速提取位置码
                if isinstance(path_code, dict):
                    position = path_code.get('code', '')
                elif hasattr(path_code, 'code'):
                    position = path_code.code
                else:
                    position = str(path_code)
                
                if position:
                    time_positions[time_step].append((agv_id, position))
        
        # 快速冲突检测
        for time_step, agv_positions in time_positions.items():
            if len(agv_positions) < 2:
                continue
            
            # 位置分组检查
            position_groups = defaultdict(list)
            for agv_id, position in agv_positions:
                position_groups[position].append(agv_id)
            
            # 发现冲突
            for position, agv_list in position_groups.items():
                if len(agv_list) > 1:
                    conflicts.append({
                        'type': 'position_conflict',
                        'time_step': time_step,
                        'position': position,
                        'agv_ids': agv_list,
                        'severity': 'high'
                    })
        
        self.logger.debug(f"快速检测到 {len(conflicts)} 个冲突")
        return conflicts
 
 
# 碰撞解决器
class FastCollisionResolver:
    """碰撞解决器"""
    
    def __init__(self, path_mapping: Dict[str, Dict[str, int]], 
                 collision_detector: FastCollisionDetector, agv_manager=None):
        self.path_mapping = path_mapping
        self.collision_detector = collision_detector
        self.agv_manager = agv_manager
        self.logger = logging.getLogger(__name__)
    
    def resolve_conflicts(self, planned_paths: List[Dict], conflicts: List[Dict], executing_tasks: List[Dict] = None) -> List[Dict]:
        """
        解决冲突
        
        Args:
            planned_paths: 规划路径列表
            conflicts: 冲突列表
            executing_tasks: 执行任务列表
            
        Returns:
            List[Dict]: 解决冲突后的路径列表
        """
        if not conflicts:
            return planned_paths
        
        # 构建路径字典便于快速访问
        paths_dict = {path['agvId']: path for path in planned_paths}
        
        # 按时间步排序处理冲突
        sorted_conflicts = sorted(conflicts, key=lambda x: x.get('time_step', 0))
        
        for conflict in sorted_conflicts:
            if conflict['type'] == 'position_conflict':
                agv_ids = conflict['agv_ids']
                time_step = conflict['time_step']
                
                # 简单策略:保留第一个AGV,其他延迟
                sorted_agv_ids = sorted(agv_ids)
                
                for i, agv_id in enumerate(sorted_agv_ids[1:], 1):
                    if agv_id in paths_dict:
                        self._add_delay_to_path(paths_dict[agv_id], delay_steps=i)
                        self.logger.debug(f"为AGV {agv_id} 添加 {i} 步延迟")
        
        return list(paths_dict.values())
    
    def _add_delay_to_path(self, path_data: Dict, delay_steps: int):
        """为路径添加延迟步骤"""
        if delay_steps <= 0 or not path_data.get('codeList'):
            return
        
        # 在路径开始处重复第一个位置
        first_code = path_data['codeList'][0]
        
        # 创建延迟代码
        if isinstance(first_code, dict):
            delay_code = first_code.copy()
        else:
            delay_code = {
                'code': first_code.code if hasattr(first_code, 'code') else str(first_code),
                'direction': first_code.direction if hasattr(first_code, 'direction') else "90"
            }
        
        # 添加延迟步骤
        for _ in range(delay_steps):
            path_data['codeList'].insert(0, delay_code)
    
    def validate_four_direction_movement(self, planned_paths: List[Dict]) -> List[Dict]:
        """验证四向移动约束"""
        return planned_paths
 
 
class PathPlanningFactory:
    """路径规划器工厂类"""
    
    @staticmethod
    def create_path_planner(algorithm_type: str, path_mapping: Dict[str, Dict[str, int]]) -> PathPlanner:
        """
        创建路径规划器实例
        
        Args:
            algorithm_type: 算法类型
            path_mapping: 路径点映射字典
            
        Returns:
            PathPlanner: 路径规划器实例
        """
        algorithm_upper = algorithm_type.upper()
        
        if algorithm_upper in ["A_STAR", "ASTAR", "A*", "DIJKSTRA", "GREEDY"]:
            return AStarPathPlanner(path_mapping)
        else:
            # 默认A*算法
            logging.getLogger(__name__).warning(f"未知算法类型 {algorithm_type},使用默认A*算法")
            return AStarPathPlanner(path_mapping)
    
    @staticmethod
    def create_batch_path_planner(algorithm_type: str, path_mapping: Dict[str, Dict[str, int]], 
                                 agv_manager=None) -> BatchPathPlanner:
        """
        创建批量路径规划器实例
        
        Args:
            algorithm_type: 基础算法类型
            path_mapping: 路径点映射字典
            agv_manager: AGV管理器,用于获取AGV状态信息
            
        Returns:
            BatchPathPlanner: 批量路径规划器实例
        """
        return BatchPathPlanner(path_mapping, algorithm_type, agv_manager)
 
# 导出核心类和函数
__all__ = [
    'ExecutingTaskExtractor',
    'BatchPathPlanner',
    'PathPlanner',
    'AStarPathPlanner',
    'PathPlanningFactory',
    'FastCollisionDetector',
    'FastCollisionResolver'